Sunday, July 17, 2011

Dr. Shaun Craig joins Chiropractic Health Center's Team in Pueblo, Colorado


The Chiropractic Health Center is proud to welcome

Dr. Shaun Craig to Pueblo!

Dr. Shaun Craig

 

Originally from North Dakota, Dr. Craig has relocated to Pueblo Colorado after many years of chiropractic practice. Dr. Craig is dedicated to finding natural health solutions for his patients utilizing applied kinesiology chiropractic methods, in which he is a trained and certified practitioner.


Dr. Craig welcomes new patients and Medicare

 

Characteristics of Applied Kinesiology 

at the Chiropractic Health Center

719-544-1468



·        Correlates with and enhances standard examination.

·        Diagnoses and treats the primary finding in cases of neuromusculoskeletal dysfunction, i.e. muscle impairment and inhibition.

·        Adds extra patient specific information to the standard history, physical diagnosis, and laboratory tests.

·        Helps the doctor to understand functional symptomatic complexes when standard diagnosis and laboratory tests show no cause for the symptoms.

·        Examines all sides of the triad of health. (See image below)


Triad of Health
Treatment to each side of the triangle is possible
with Applied Kinesiology methods.

·        Assesses body control by the nervous system.


·        Integrates function of the meridian system (acupuncture) into the examination.


·        Examines function before symptoms are present in order to prevent or delay the onset of pathologic processes.


·        Interdisciplinary approach – fits the best treatment to the patient’s specific needs.


·        Provides an interactive assessment of an individual’s functional health status that is non-invasive and comparatively inexpensive and emphasizes the importance of correlating findings with standard diagnostic procedures.

 

Applied Kinesiology Chiropractic Technique: Rationale, Science and Evidence


--by Dr. Scott Cuthbert (Owner, Chiropractic Health Center, PC)

Introduction

Applied Kinesiology (AK) draws together the core elements of many chiropractic methods and other complementary and alternative medicine (C.A.M.) systems. AK practitioners understand that muscle inhibition is a major diagnostic expression of neuro- musculoskeletal dysfunction and have the option to use a variety of alternative disciplines in the treatment of the patient. The assessment of the functional status of the patient is the major focus it offers to traditional medical care. Using changes in the manual muscle test (MMT) as a diagnostic process unites the various C.A.M. systems within AK.



Figure 1. Abnormal results of the manual muscle test, whether the muscle is weak or hypertonic, may indicate abnormal involvement of any of the factors surrounding it. A change in muscle function when specific stimulation or therapy is applied to one of these elements also indicates dysfunction of the surrounding factors.

Sufferers gain relief from their headaches by visiting a chiropractor, improve their allergies by seeing an acupuncturist, or lose weight with the help of a nutritionist. The AK practitioner utilizes all these alternative techniques and integrates them with standard diagnostic tests as well as the MMT; therefore patients are not limited to just one diagnostic method or one means of treatment. There is no other clinical method available for testing specific muscle strength and function as reliable, easy-to-use, inexpensive and valid as the manual muscle test (MMT). [1-2]

AK provides an integrated, interdisciplinary approach to health care. George J. Goodheart, D.C., originated AK in 1964. Dr. Goodheart found a technique that could immediately make a muscle that tested weak strong. The technique did not correct all muscles that tested weak but from this initial experience, testing muscles in a precise manner became routine in his examination protocol. The investigation of other causes of muscle weakness and their correction developed into what is currently the practice of AK.

Goodheart’s work drew a large following of doctors and recognition. He was the first chiropractor officially appointed to the US Winter Olympic Sports Medicine team. [3] In 1976 the International College of Applied Kinesiology was founded to promote the research and teaching of AK. [2]

The ICAK began in the United States with a majority of chiropractors as members.  There are now chapters in Australia, Austria, Benelux, Brazil, Canada, France, Germany, Italy, Korea, Russia, Sweden, Switzerland, United Kingdom, and the USA. The organization is multi-disciplinary; membership includes medical doctors, osteopaths, dentists, psychologists, and other health care providers who are licensed to diagnose patients. Medical practitioners using AK vary by country.  There are nearly 1,000 medical doctors in Germany, for instance, who use AK as part of their diagnostic system. [4]

The first book to describe the value of AK to other professions -- "AK and the Stomatognathic System" -- was authored by Gelb, a dentist, in 1977. [5]

Goodheart set the peer review trend for AK by publishing a discussion of dentistry and AK in 1976. [6] Scopp published the first research paper discussing the AK approach to a functional organic disorder with allergy testing in 1979. [7]

There are now over 100 papers published in peer-reviewed journals on the methods and outcomes of AK. [2] Few chiropractic therapeutic methods have been investigated or written about as extensively as AK. There have been 35 separate books published about AK methods since 1964. [2]

American Chiropractic Association Statement on AK

According to the American Chiropractic Association, Applied Kinesiology is one of the  most frequently used chiropractic techniques in the United States, with 43.2% of chiropractors employing this method.

"This is an approach to chiropractic treatment in which several specific procedures may be combined. Diversified/manipulative adjusting techniques may be used with nutritional interventions, together with light massage of various points referred to as neurolymphatic and neurovascular points. Clinical decision-making is often based on testing and evaluation of muscle strength." [8]

Science and AK

Several websites now display each of the Index Medicus peer-reviewed research papers (including their Abstracts) regarding applied kinesiology and the reliability and validity of the manual muscle test. These papers go from 1915 (Journal of the American Medical Association, with a paper called "A method of testing muscular strength in infantile paralysis" by Martin EG, and Lovett RW), through research reports up to 2008 in publications like the Journal of Manipulative and Physiological Therapeutics, Physical Therapy, and the Journal of Electromyography and Kinesiology. This is the most comprehensive coverage of the research literature substantiating applied kinesiology methods ever published. [2]
Evidence-based decision making in clinical practice requires, first of all, evidence. This research offers evidence about the methods, clinical efficacy, and neurologic rationales of applied kinesiology examination and treatment. [9-10]

The research and reviews of applied kinesiology are listed at the National Library of Medicine, where AK research has now been given its own MESH heading. [11]

For at least 50 years it has been thought that most forms of chronic musculoskeletal pain are due to abnormal patterns of muscular activity. However, after 50 years the research evidence is suggesting the demise of the hyperactivity-causality model for musculoskeletal pain. The lack of convincing evidence to support the belief in hyperactivity as the etiological factor in musculoskeletal conditions has been pointed out in recent reviews of the literature for many chronic musculoskeletal disorders. [12-14]

For chiropractors and other manipulative or orthopedic physicians, the importance of expertly assessing the functional state of the motor system is emphasized by studies suggesting that faulty motor control is the most likely source of at least 50% of low back pain syndromes. [15]

The evidence now shows with greater clarity than ever before that inflammation or injury produces specifically identified inhibited muscles. Controlled clinical studies have shown that dysfunction and pain specifically in the ankle, [16] knee, [17-19] lumbar spine, [20-22] temporomandibular joint, [23] and cervical spine [24-27] will produce inhibited muscles. These data indicate that the body’s reaction to injury and pain is not increased muscular tension and stiffness; rather muscle inhibition is often more significant. These results are more in line with the common impression that pain makes muscles difficult to use and less powerful. [28]

Because of Sherrington’s Law of Reciprocal Inhibition, these two functional states in muscles are related. [29] Sherrington’s law states that decreased activity of certain muscles leads to facilitation – and thus increased activity and tension – of their antagonist muscles. Poor motor control goes hand in hand with decreased joint stability and may be the fundamental force creating and perpetuating spinal dysfunction. [30-39]

Muscles not only move bones, they hold the skeletal system in balance. There is a dynamic tension in the musculoskeletal system. The muscles act like guy wires holding the bones in place. Skeletal balance is maintained by opposing muscles. If a muscle is weaker than the one opposing it, the opposing muscle becomes tight and the skeletal structures will be out of balance.












Figure 2: Muscle Balance                               Balance lost from weak muscle

A weak muscle can cause pain and spasm in the opposing muscle. Ironically many therapeutic efforts are directed toward spastic muscles, which are not the cause of the problem. For example, weak abdominal muscles will cause the pelvis to tilt and the antagonistic low back muscles to go into spasm. Until the weakness in the abdominal muscles is corrected, efforts to reduce the spasm in the low back will not be very effective.

The later works of Panjabi, Janda, Lewit, Jull, Sahrmann, Bergmark, Hammer and Liebenson have confirmed the original findings of Goodheart, reporting that muscles predictably respond to pain, inflammation, and/or injury with weakness. [30-39] These researchers have demonstrated that functional pathology of the muscle system is the most common clinical finding in pain patients presenting to chiropractors and other musculoskeletal physicians. However, this disorder of the muscle system is routinely ignored in the diagnosis and treatment of these patients because physicians do not have a tool to diagnose it.

The MMT presents a clinical strategy to assess these muscular impairments that have been shown to drive so many of the clinical conditions affecting chiropractic patients.

The muscle weakness revolution that is now occurring in the scientific literature requires the use of clinical tools like the MMT that are uniquely designed to detect this important neuromuscular impairment in the patients that chiropractors, orthopedists, rheumatologists, physical therapists, dentists, and general practitioners treat. The ICAK has been training doctors of chiropractic in the precise methodologies of MMT for over 30 years, and if physicians are not capable of diagnosing this problem in patients, they are missing a fundamental component of their musculoskeletal dysfunction.
Assessing the function of muscles with the MMT pre- and post-treatment can also assess the benefit of a therapeutic intervention: does the therapy improve or worsen muscle function?  This assessment process is the basis of applied kinesiology (AK).

A recent paper (Chiropractic Muscle Testers Rise to the Challenge of Validating Their Work) has described the research evidence behind the chiropractic profession’s use of the MMT. [40]


Basic applied kinesiology


AK uses standard manual muscle testing as a diagnostic method for evaluating the body’s health. Commonly, AK patients have their muscles tested in many different functional positions.

Through evaluation of the function of specific muscles pre- and post-treatment throughout a patient's body, therapeutic efficacy for particular problems can be evaluated. Applied kinesiologists theorize that physical, chemical, and mental imbalances are associated with secondary muscle dysfunction – specifically a muscle inhibition (usually preceding an overfacilitation of an opposing muscle).

Challenge is an essential diagnostic procedure used to determine the body’s ability to cope with external stimuli, which can be physical, chemical, or mental.  An example of a physical stimulus is pushing on an articulation to determine if there is a muscle strength change. Chemical stimulus may occur when one inhales potentially toxic chemicals or chews nutritional factors.  Mental stimuli include thought processes, either pleasant or unpleasant to the individual. After an external stimulus is applied, muscle-testing procedures are done to determine an improvement in or weakening of the muscle strength as a result of the stimulus.

Therapy localization is another diagnostic procedure in AK that consists of placing the patient’s hand over areas of suspected involvement, then using muscle testing procedures to determine any change in strength. Placing the patient’s hand on different locations stimulates nerve endings and/or possibly changes the patient’s electromagnetic energy field. Therapy localization is strictly a diagnostic tool in AK that is to be combined with the other diagnostic findings to arrive at a final conclusion.

Applying the proper therapy results in an immediate strengthening of the inhibited muscle. Scientific, repeatable, and accurate muscle testing requires the specific maximum isolation of a muscle before it is tested. The MMT should evaluate individual muscles as far as possible. There is an overlap of muscle actions, as well as an interdependence of muscles in movement. This close relationship in muscle function need not rule out the possibility or the practicability of testing individual muscles. There is an ideal starting position and vector of testing force that places the muscle being tested as the prime mover and the synergists at a disadvantage. When any one muscle in the body is inhibited in its strength or action, stability of the part is impaired or some exact movement is lost to some extent.



Figure 3 demonstrates MMT of the psoas major muscle. It shows that the quadriceps, sartorius, and adductor muscles all assist in holding the hip in a flexion position. However, the line of pull of the muscle and the direction of the examiner’s pressure place emphasis on the action of the right psoas major, making identification of inhibition in this specific muscle possible.




Figure 4. Synergist muscle substitution can be identified and prevented during the MMT. In this figure (demonstrating a gluteus maximus muscle test), the examiner can visualize a lifting of the pelvis with external rotation and abduction of the hip, with recruitment of the ipsilateral hamstring, thoracolumbar extensors, and contralateral leg flexor muscles. The pelvis externally rotates because the weak gluteus maximus recruits synergists to facilitate its action during the MMT.

The arm-pull-down test (commonly used by novice muscle testers and by the critics of AK methods) is considered by the International College of Applied Kinesiology (ICAK) to be a very poor form of muscle testing. The arm-pull-down test involves so many different muscles that no specificity as to the muscle with the problem and the neurological factors associated with a positive muscle test findings can be ascertained upon testing a muscle this way.


Figure 5. The “arm test” does not isolate nor specifically test any particular shoulder muscle.

Nutritional evaluation in AK is done as part of a total examination. A muscle test alone is inadequate to determine nutritional needs. From its beginning the ICAK has taught that all muscle tests must confirm the findings of laboratory, nutritional diaries, blood and saliva testing, and patient history. A person who uses one MMT to determine the nutritional status of a patient has in fact misunderstood AK and is ignoring the criteria set down by the ICAK. For chiropractors, the dietary and nutritional factor is only one component of the problem posed by a particular patient.

AK nutrient testing appears to reflect the nervous system's efferent response to the stimulation of gustatory and olfactory nerve receptors by various tested substances. There is considerable evidence in the scientific literature of extensive efferent function throughout the body from stimulation of the gustatory and olfactory receptors.

The taste receptors on the tongue can detect very small concentrations of substances within a fraction of a second. [41] Exposure to taste elicits a variety of immediate responses throughout the body, including neurological, digestive, endocrine, cardiovascular, thermogenic, and renal. [42]

Evaluation of nutritional products and foods by determining how your body reacts to them, as observed by MMT, is an important addition to providing optimal nutritional support to patients who need it.

External links

Summary

Much of the subjectivity in manual medicine (motion palpation, cranio-sacral palpation, pulse-diagnosis, the examiner's sense of the tissues, and postural analysis) has been made more objective by the use of manual muscle testing. The findings of various manual medicine modalities (when evaluated using manual muscle testing) have been placed into the scientific arena...scientific in the practical sense meaning that which is explicable, measurable, demonstrable, and reproducible.

There is an approach to health care that helps the doctor understand functional conditions and provides direction toward the optimal treatment. It is the functional examination that includes applied kinesiology assessment.

References:

1)       Cuthbert SC, Goodheart GJ Jr. On the reliability and validity of manual muscle testing: a literature review, Chiropr Osteopat. 2007 Mar 6;15(1):4. Available at: http://www.chiroandosteo.com/content/15/1/4.
2)       ICAK-USA and ICAK-International websites: “AK Research Compendium. Dr. Scott Cuthbert, 9-16-2007http://www.icakusa.com/scientificresearch.php and http://www.icak.com/college/research/publishedarticles.shtml.  Accessed July 29, 2008.
6)       Goodheart, GJ, Jr. 1976. Kinesiology and Dentistry.  J Amer Soc Psychosomatic Disease  6:16-18.
7)       Scopp A. 1979. An Experimental Evaluation of Kinesiology in Allergy and Deficiency Disease Diagnosis. Journal of Orthomolecular Psychiatry. 7(2):137-8.
9)       Expanding the neurological examination, Part 1. Intern. J. Neuroscience. http://www.icakusa.com/upload/files/Intern%20J%20Neuroscience%201999%20Expanding%20the%20Neurological%20Exam%20Part%201%20of%202.pdf.
12)   Lund JP. et al.  The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity, Canadian Journal of Physiology and Pharmacology, 1991;69:683-694.
13)   Dishman JD, Greco DS, Burke JR. Motor-evoked potentials recorded from lumbar erector spinae muscles: a study of corticospinal excitability changes associated with spinal manipulation. J Manipulative Physiol Ther. 2008 May;31(4):258-70.
14)   Fryer G, Morris T, Gibbons P. Paraspinal muscles and intervertebral dysfunction: part two. J Manip Physiol Ther. 2004 Jun;27(5):348-57.
15)   Mannion AF, Junge A, Taimela S, Müntener M, Lorenzo K, Dvorak J. Active therapy for chronic low back pain: part 3. Factors influencing self-rated disability and its change following therapy. Spine. 2001 Apr 15;26(8):920-9.
16)   Nicholas JA, Marino M: The relationship of injuries of the leg, foot, and ankle to proximal thigh strength in athletes, Foot Ankle. 1987 Feb;7(4):218-28.
17)   Slemenda C, Brandt KD, Heilman DK, Mazzuca S, Braunstein EM, Katz BP, Wolinsky FD. Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med. 1997 Jul 15;127(2):97-104.
18)   Stokes M, Young A: Investigations of quadriceps inhibition: implications for clinical practice. Physiotherapy 1984;70:425-428.
19)   Spencer JD, Hayes KC, Alexander IJ: Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys Med Rehab 1984;65:171-177.
20)   Nummi J, Jarvinen T, Stambej U, Wickstrom G: Diminished dynamic performance capacity of back and abdominal muscles in concrete reinforcement workers. Scand J Work Environ Health 1978, 4 Suppl 1:39-46.
21)   Hodges PW, Richardson CA: Inefficient muscular stabilization of the lumbar spine associated with low back pain. Spine 1996, 21:2640-2650.
22)   Hossain M, Nokes LDM: A model of dynamic sacro–iliac joint instability from malrecruitment of gluteus maximus and biceps femoris muscles resulting in low back pain. Medical Hypotheses 2005, 65(2):278-281.
23)   Zafar H: Integrated jaw and neck function in man. Studies of mandibular and head-neck movements during jaw opening-closing tasks. Swed Dent J Suppl, 2000;(143):1-41.
24)   Jull GA: Deep cervical flexor muscle dysfunction in whiplash. J Musculoskel Pain 2000;8:143-154.
25)   Jull G, Barret C, Magee R, Ho P: Further clinical clarification of the muscle dysfunction in cervical headache. Cephalgia 1999; 19:179-185.
26)   Vernon HT, Aker P, Aramenko M, Battershill D, Alepin A, Penner T: Evaluation of neck muscle strength with a modified sphygmomanometer dynamometer: reliability and validity. J Manipulative Physiol Ther. 1992 Jul-Aug;15(6):343-9.
27)   Edgerton VR, Wolf SL, Levendowski DJ, Roy RR: Theoretical basis for patterning EMG amplitudes to assess muscle dysfunction. Med Sci Sp Exer 1996;28:744-751.
28)   Mills KR, Edwards RH. Investigative strategies for muscle pain. J Neurol Sci. 1983 Jan;58(1):73-8.
29)   Sherrington C: Selected Writings of Sir Charles Sherrington, Ed. Brown DD. Oxford: Oxford University Press; 1979:274-282.
30)   Lewit K: Manipulative Therapy in Rehabilitation of the Locomotor System, 3rd ed. London: Butterworths; 1999.
31)   Liebenson C. Ed: Rehabilitation of the Spine: A Practitioner’s Manual, 2nd ed. Philadelphia: Lippincott, Williams & Wilkins; 2007.
32)   Janda V: Muscle Function Testing. London: Butterworths; 1983.
33)   Goodheart GJ: Applied Kinesiology Research Manuals, privately published yearly, Detroit, MI; 1964-1995.
34)   Kendall HO, Kendall FP: Posture and Pain. Baltimore: Williams & Wilkins; 1952.
35)   Panjabi M: A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 2005 Jul 27.
36)   Janda V: Muscle strength in relation to muscle length, pain and muscle imbalance, Chapter 6. In Muscle Strength, Harms-Ringdahl K, Ed.  New York: Churchill Livingstone; 1993.
37)   Sahrmann S: Diagnosis and Treatment of Movement Impairment Syndromes. St. Louis, MO: Mosby, Inc; 2001.
38)   Bergmark A: Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand 1989;230:20-24.
39)   Hammer WI, Ed: Functional Soft Tissue Examination and Treatment by Manual Methods, 2nd Ed. Gaithersburg, MD: Aspen Publishers; 1999:415-445.12, 27-33.
40)   Chiropractic Muscle Testers Rise to the Challenge of Validating Their Work. http://www.systemsdc.com/ak/researchDCarticle.html.
41)   Guyton AC. Textbook of medical physiology. Philadelphia: Saunders, 1986:747.
42)    Mattes RD. Physiologic responses to sensory stimulation by food: nutritional implications. J Am Diet Assoc 1997; 406-13.
Scott C. Cuthbert, BA, DC


A native of California, Dr. Scott Cuthbert first attended St. John’s College, where he received his BA in the liberal arts. Dr. Scott (as his patients call him) then graduated from the Palmer College of Chiropractic in Davenport, Iowa. He migrated to Ireland and practiced chiropractic on Finn MacCool’s island for two years. He came to study the applied kinesiology chiropractic of Dr. George Goodheart in 2000 and found within that study a lifetime’s work. Dr. Scott is on the board of directors of the International College of Applied Kinesiology (ICAK-USA), and is co-chairman of its research committee. He practices at the Chiropractic Health Center in Pueblo, Colorado and can be reached at (719) 544-1468 or via email at cranialdc@hotmail.com. His research can be reviewed at http://www.icakusa.com/. 


Saturday, July 2, 2011

The Body Language of Health Problems

Throughout the development of applied kinesiology there have been many characteristics observed indicating different health problems. This is known as "body language."



Knowing body language rapidly guides the examination. Body language can be seen in one's gait, posture, skin characteristics, hair, and this list could go on and on. It is seen by simple observation or by the patient's actions during the test procedures.

We know that the patient's body tries to effectively perform when muscle testing is done. This is recognized by the automatic recruitment of synergistic muscles when the primary muscle being tested is functionally inhibited (weak).

Cranial Fault Body Language


A similar effort may be present to adapt to cranial faults. When a muscle is being tested, the patient may take a breath or contract muscles in a facial grimace to accommodate for a cranial fault. If the examiner does not notice this, a functionally inhibited muscle will be missed. It is paramount that the examiner observe for respiratory changes or facial grimacing during muscle testing. The changes may be gross or very subtle.

When there is adaptive respiratory change, ask the patient to breathe in a relaxed manner while testing is being done; you will explain why later. Even though the patient desires to be cooperative, later in the examination s/he will often resume the respiratory change because it is an innate effort of the body to function effectively during the test.

A lay person would think that a facial grimace is simply showing an effort to pass the muscle test. Sometimes it is necessary to tell the patient that this is not a contest; you are just testing to see how the muscle performs. Explain that it is necessary that s/he keep the face and eyes relaxed, and you will explain why later.

When I am ready to make cranial corrections I show the patient a model skull with the sutures marked in black. I explain: "When I was in school I was told that the skull is solid and about all that it is worth is to protect the brain and is a place to hang your face. In reality there is subtle movement between the bones and the attachment to the dura mater that covers and provides balanced support for the brain. The dura also extends onto the cranial nerves, and improper tension may cause the nerves to not function properly.

"The reason I had you breathe in a relaxed manner when your muscles were being tested is because changing your respiration affects the test. The cranial mechanism is called the cranial primary respiratory system. When I correct your cranium I will have you take a specific deep phase of respiration that will enhance my correction. When I was testing your muscles your body knew it could function better if you changed your respiration. In other words the change of respiration was your body attempting to enhance the position of the bones and dura."

If the patient makes a facial grimace to enhance function, the above discussion can be modified to relate to the muscle contraction enhancing the bone and dura position.

When cranial fault body language is brought into the explanation, the patient has an intimate relation to the explanation and s/he will own it.

The Importance of Body Language

Applied Kinesiology aims to promote and restore muscle balance in every muscle of the body, and in so doing helps improve physical movement. Increased movement is a powerful therapy in itself, particularly in relationship to the cranium, neck, jaw, and shoulders. Improved muscle function not only helps locomotion and posture, but the brain as well, including speech, vision, balance, memory and even intellect. Because muscles have other important functions such as energy production, circulation,  and immune activity, increasing physical power, muscular balance, movement speed and agility and decreasing muscular pain with use can improve overall health.

The ability to "read the body language of health problems" as expressed through the voluntary skeletal muscular system (measuring 40% of the body weight) is a critical asset for the applied kinesiology physician. The muscles are the source and the recipient of the greatest neural activity in the body. This includes sensory and motor activity, segmental and cerebral pathways, and autonomic activity in relationship to the metabolic, visceral, and circulatory demands required during muscular exertion and most of the activities of human life. The muscles are at the crossroads of afferent and efferent stimuli and are the most exposed part of the nervous system. Understanding body language gives the applied kinesiology physician an added insight into where the disturbances in your health originate.

The manual muscle test helps your doctor determine where the nervous system is malfunctioning. Correction of these "body language" signs of dysfunction returns you to your optimum physical and neurological state.


Body Language is the Key!!